Search results for "Conservation laws"

showing 6 items of 6 documents

Nonlinear Diffusion in Transparent Media

2021

Abstract We consider a prototypical nonlinear parabolic equation whose flux has three distinguished features: it is nonlinear with respect to both the unknown and its gradient, it is homogeneous, and it depends only on the direction of the gradient. For such equation, we obtain existence and uniqueness of entropy solutions to the Dirichlet problem, the homogeneous Neumann problem, and the Cauchy problem. Qualitative properties of solutions, such as finite speed of propagation and the occurrence of waiting-time phenomena, with sharp bounds, are shown. We also discuss the formation of jump discontinuities both at the boundary of the solutions’ support and in the bulk.

Dirichlet problemflux-saturated diffusion equationsGeneral Mathematicsneumann problemMathematical analysisparabolic equationsBoundary (topology)waiting time phenomenaClassification of discontinuitiesparabolic equations; dirichlet problem; cauchy problem; neumann problem; entropy solutions; flux-saturated diffusion equations; waiting time phenomena; conservation lawsNonlinear systemMathematics - Analysis of PDEsFOS: MathematicsNeumann boundary conditionInitial value problemcauchy problemUniquenessdirichlet problemconservation lawsEntropy (arrow of time)entropy solutionsAnalysis of PDEs (math.AP)MathematicsInternational Mathematics Research Notices
researchProduct

A numerical study of postshock oscillations in slowly moving shock waves

2003

Abstract Godunov-type methods and other shock capturing schemes can display pathological behavior in certain flow situations. This paper discusses the numerical anomaly associated to slowly moving shocks. We present a series of numerical experiments that illustrate the formation and propagation of this pathology, and allows us to establish some conclusions and question some previous conjectures for the source of the numerical noise. A simple diagnosis on an explicit Steger-Warming scheme shows that some intermediate states in the first time steps deviate from the true direction and contaminate the flow structure. A remedy is presented in the form of a new flux split method with an entropy i…

PhysicsShock capturing schemesSlowly moving shocksMechanicsMoving shockFlux split methodsComputational MathematicsNonlinear systems of conservation lawsNumerical noiseComputational Theory and MathematicsModeling and SimulationModelling and SimulationCompressible flowsEntropy (energy dispersal)Computers & Mathematics with Applications
researchProduct

Lagrangian dynamics and possible isochronous behavior in several classes of non-linear second order oscillators via the use of Jacobi last multiplier

2015

Abstract In this paper, we employ the technique of Jacobi Last Multiplier (JLM) to derive Lagrangians for several important and topical classes of non-linear second-order oscillators, including systems with variable and parametric dissipation, a generalized anharmonic oscillator, and a generalized Lane–Emden equation. For several of these systems, it is very difficult to obtain the Lagrangians directly, i.e., by solving the inverse problem of matching the Euler–Lagrange equations to the actual oscillator equation. In order to facilitate the derivation of exact solutions, and also investigate possible isochronous behavior in the analyzed systems, we next invoke some recent theoretical result…

Isochronous dynamicConservation lawApplied MathematicsMechanical EngineeringMathematical analysisAnharmonicityIsotonic potentialJacobi Last Multiplier (JLM)Simple harmonic motionInverse problemMultiplier (Fourier analysis)Nonlinear systemsymbols.namesakeSimple harmonic oscillatorMechanics of MaterialssymbolsNoether's theoremSettore MAT/07 - Fisica MatematicaLagrangianConservation lawsVariable (mathematics)MathematicsInternational Journal of Non-Linear Mechanics
researchProduct

Generalized Camassa-Holm Equations: Symmetry, Conservation Laws and Regular Pulse and Front Solutions

2021

In this paper, we consider a member of an integrable family of generalized Camassa–Holm (GCH) equations. We make an analysis of the point Lie symmetries of these equations by using the Lie method of infinitesimals. We derive nonclassical symmetries and we find new symmetries via the nonclassical method, which cannot be obtained by Lie symmetry method. We employ the multiplier method to construct conservation laws for this family of GCH equations. Using the conservation laws of the underlying equation, double reduction is also constructed. Finally, we investigate traveling waves of the GCH equations. We derive convergent series solutions both for the homoclinic and heteroclinic orbits of the…

Holm equationsIntegrable systemGeneral MathematicsInfinitesimalNonclassical symmetries01 natural sciencesdouble reduction010305 fluids & plasmas0103 physical sciencesmultiplier methodComputer Science (miscellaneous)QA1-939Generalized Camassa–Holm equationsHomoclinic orbit010306 general physicsEngineering (miscellaneous)Settore MAT/07 - Fisica MatematicaConvergent seriesmulti-infinite series solutionsMathematicsMathematical physicsConservation lawsnonclassical symmetriesConservation lawHomoclinic and heteroclinic orbitsMulti-infinite series solutionsDouble reductionSymmetry (physics)Pulse (physics)generalized Camassa&#8211Mathematics::LogicMultiplier methodHomogeneous spaceconservation lawshomoclinic and heteroclinic orbitsMathematics
researchProduct

AN HYPERBOLIC-PARABOLIC PREDATOR-PREY MODEL INVOLVING A VOLE POPULATION STRUCTURED IN AGE

2020

Abstract We prove existence and stability of entropy solutions for a predator-prey system consisting of an hyperbolic equation for predators and a parabolic-hyperbolic equation for preys. The preys' equation, which represents the evolution of a population of voles as in [2] , depends on time, t, age, a, and on a 2-dimensional space variable x, and it is supplemented by a nonlocal boundary condition at a = 0 . The drift term in the predators' equation depends nonlocally on the density of preys and the two equations are also coupled via classical source terms of Lotka-Volterra type, as in [4] . We establish existence of solutions by applying the vanishing viscosity method, and we prove stabil…

Population dynamicsPopulationType (model theory)Space (mathematics)01 natural sciencesStability (probability)Predator-prey systemsNonlinear Sciences::Adaptation and Self-Organizing SystemsApplied mathematicsQuantitative Biology::Populations and Evolution[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicseducationEntropy (arrow of time)Variable (mathematics)Mathematicseducation.field_of_studyApplied Mathematics010102 general mathematicsNonlocal boundary value problemNonlocal conservation lawsParabolic-hyperbolic equationsTerm (time)010101 applied mathematicsPopulation dynamics Predator-prey systems Parabolic-hyperbolic equations Nonlocal conservation laws Nonlocal boundary value problemHyperbolic partial differential equationAnalysis
researchProduct

An order-adaptive compact approximation Taylor method for systems of conservation laws

2021

Abstract We present a new family of high-order shock-capturing finite difference numerical methods for systems of conservation laws. These methods, called Adaptive Compact Approximation Taylor (ACAT) schemes, use centered ( 2 p + 1 ) -point stencils, where p may take values in { 1 , 2 , … , P } according to a new family of smoothness indicators in the stencils. The methods are based on a combination of a robust first order scheme and the Compact Approximate Taylor (CAT) methods of order 2p-order, p = 1 , 2 , … , P so that they are first order accurate near discontinuities and have order 2p in smooth regions, where ( 2 p + 1 ) is the size of the biggest stencil in which large gradients are n…

Settore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciPhysics and Astronomy (miscellaneous)010103 numerical & computational mathematicsAdaptive high-order methods01 natural sciencesStencilsymbols.namesakeTaylor seriesFOS: MathematicsApplied mathematicsMathematics - Numerical Analysis0101 mathematicsMathematicsConservation lawsFinite differencesNumerical AnalysisConservation lawSmoothnessApplied MathematicsNumerical analysisFinite differenceApproximate Taylor Lax-Wendroff methodsNumerical Analysis (math.NA)Computer Science ApplicationsEuler equations010101 applied mathematicsComputational MathematicsNonlinear systemModeling and Simulationsymbols
researchProduct